Search results for "conjugative plasmid"
showing 9 items of 9 documents
Conjugative plasmid pIP501 undergoes specific deletions after transfer from Lactococcus lactis to Oenococcus oeni
2003
Conjugal transfer of plasmids pIP501 and its derivative pVA797 from Lactococcus lactis to Oenococcus oeni was assayed by filter mating. Plasmid pIP501 was transferred to a number of O. oeni strains whereas a single transconjugant of O. oeni M42 was recovered when pVA797 was used. Physical analysis of the transconjugant plasmids revealed that pIP501 and pVA797 underwent extensive deletions in O. oeni that affected the tra region (conjugal transfer) and SegB region (stability). All derivatives showed segregational instability in O. oeni, but were stably maintained in L. lactis. These differences correlated with the different plasmid copy numbers and the extent of deletions within the SegB reg…
Identification of SCP2165, a new SCP2-derived plasmid of Streptomyces coelicolor A3(2).
2005
Aims: Characterization of SCP2165, a plasmid identified in the Gram-positive bacterium Streptomyces coelicolor A3(2). Methods and Results: Pulsed-field gel electrophoresis (PFGE) of mycelia of a S. coelicolor strain embedded in low melting agarose revealed the presence of a plasmid. Restriction enzyme mapping and sequence analysis of a 2·1 kb fragment revealed that this plasmid could be SCP2. SCP2 and its spontaneous derivative SCP2* are self-transmissible plasmids and have chromosome mobilizing ability (c.m.a.). SCP2* has a c. 1000-fold increased c.m.a. compared with SCP2. Interestingly the plasmid, named SCP2165, shows a c.m.a. from 5 × 10−2 to 1 × 10−1 which is 50–100-fold higher than …
Midbiotics: conjugative plasmids for genetic engineering of natural gut flora.
2019
ABSTRACT The possibility to modify gut bacterial flora has become an important goal, and various approaches are used to achieve desirable communities. However, the genetic engineering of existing microbes in the gut, which are already compatible with the rest of the community and host immune system, has not received much attention. Here, we discuss and experimentally evaluate the possibility to use modified and mobilizable CRISPR-Cas9-endocing plasmid as a tool to induce changes in bacterial communities. This plasmid system (briefly midbiotic) is delivered from bacterial vector into target bacteria via conjugation. Compared to, for example, bacteriophage-based applications, the benefits of …
Beta-Lactam Sensitive Bacteria Can Acquire ESBL-Resistance via Conjugation after Long-Term Exposure to Lethal Antibiotic Concentration
2020
Beta-lactams are commonly used antibiotics that prevent cell-wall biosynthesis. Beta-lactam sensitive bacteria can acquire conjugative resistance elements and hence become resistant even after being exposed to lethal (above minimum inhibitory) antibiotic concentrations. Here we show that neither the length of antibiotic exposure (1 to 16 h) nor the beta-lactam type (penam or cephem) have a major impact on the rescue of sensitive bacteria. We demonstrate that an evolutionary rescue can occur between different clinically relevant bacterial species (Klebsiella pneumoniae and Escherichia coli) by plasmids that are commonly associated with extended-spectrum beta-lactamase (ESBL) positive hospita…
Midbiotics : conjugative plasmids for genetic engineering of natural gut flora
2019
ABSTRACTThe possibility to modify gut bacterial flora has become an important goal, and various approaches are used to achieve desirable communities. However, the genetic engineering of existing microbes in the gut, which are already compatible with the rest of the community and host immune system, has not received much attention. Here, we discuss and experimentally evaluate the possibility to use modified and mobilizable CRISPR-Cas9-endocing plasmid as a tool to induce changes in bacterial communities. This plasmid system (briefly midbiotic) is delivered from bacterial vector into target bacteria via conjugation. Compared to, for example, bacteriophage-based applications, the benefits of c…
Small things matter : of phages and antibiotic resistance conferring plasmids
2016
Viruses and plasmids are small units of genetic material dependent on cells either transiently or continuously. Intriguingly, stories of these small entities intertwine in antibiotic resistance crisis. Horizontal gene transfer enables bacteria to respond rapidly to chances in their environment. Anthropogenic consumption of antibiotics induces the travel of resistance encoding genes mainly as passengers of conjugative plasmids. In this thesis, I demonstrate that clinically important resistance plasmids could evolutionarily rescue susceptible bacteria under lethal antibiotic concentrations. If mobile resistance genes are available in surrounding community, administration of high doses of anti…
Counteracting the horizontal spread of bacterial antibiotic resistance with conjugative plasmid-dependent bacteriophages
2016
Fight evolution with evolution: plasmid‐dependent phages with a wide host range prevent the spread of antibiotic resistance
2013
The emergence of pathogenic bacteria resistant to multiple antibiotics is a serious worldwide public health concern. Whenever antibiotics are applied, the genes encoding for antibiotic resistance are selected for within bacterial populations. This has led to the prevalence of conjugative plasmids that carry resistance genes and can transfer themselves between diverse bacterial groups. In this study, we investigated whether it is feasible to attempt to prevent the spread of antibiotic resistances with a lytic bacteriophage, which can replicate in a wide range of gram‐negative bacteria harbouring conjugative drug resistance–conferring plasmids. The counter‐selection against the plasmid was sh…
Indirect Selection against Antibiotic Resistance via Specialized Plasmid-Dependent Bacteriophages
2021
Antibiotic resistance genes of important Gram-negative bacterial pathogens are residing in mobile genetic elements such as conjugative plasmids. These elements rapidly disperse between cells when antibiotics are present and hence our continuous use of antimicrobials selects for elements that often harbor multiple resistance genes. Plasmid-dependent (or male-specific or, in some cases, pilus-dependent) bacteriophages are bacterial viruses that infect specifically bacteria that carry certain plasmids. The introduction of these specialized phages into a plasmid-abundant bacterial community has many beneficial effects from an anthropocentric viewpoint: the majority of the plasmids are lost whil…